My App

2. Circular Motion

-----

Circular Motion

 

Derivations

s=Δθrs=vΔts = \Delta \theta r \\ s = v \Delta t vΔt=Δθrv \Delta t = \Delta \theta r \\ vr=ΔθΔt\dfrac{v}{r} = \dfrac{\Delta \theta}{\Delta t}

Angular Velocity (ww) (rad s1s^{-1})

by definition

w=ΔθΔtw = \dfrac{\Delta \theta}{\Delta t}

so

limΔt0=dθdt\lim_{\Delta t \to 0} = \dfrac{d\theta}{dt}

Useful Equations

w=θt,s=θt,v=wrw = \dfrac{\theta}{t}, \quad s = \theta t, \quad v = wr a=v2r=w2ra = \dfrac{v^2}{r} = w^2r F=mv2r=mw2rF = \dfrac{mv^2}{r} = mw^2r

very useful to memorise