My App

7. Angular Momentum

-----

Measure of the amount of rotational motion an object has about a particular axis

 

Rotating Rigid Body

L=r×ρ\vec{L} = \vec{r} \times \vec{\rho} L=r×(mv)=m×v2\vec{L} = \vec{r} \times (m \vec{v}) = m \times \vec{v}^2

For a rotating rigid body, the total momentum is given by

L=Iω\vec{L} = I \omega

 

Rate of Change of Angular Momentum

The rate of change of angular momentum is equal to the net torque

dLdt=drdtρ+rdρdt\dfrac{d\vec{L}}{dt} = \dfrac{d\vec{r}}{dt} \vec{\rho} + \vec{r}\dfrac{d\vec{\rho}}{dt}

assuming r\vec{r} is constant and we know dρdt=F\dfrac{d\vec{\rho}}{dt} = \vec{F} from linear rate of change of momentum

then

dLdt=r×F=τ\dfrac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \vec{\tau}

 

Conservation of Angular Momentum

When the net external torque acting on a system is zero, the total angular momentum of the system is constant

if

τ=0\sum \vec{\tau} = 0

then

dLdt=0\dfrac{d\vec{L}}{dt} = 0

and

L=constant\vec{L} = \text{constant}